Weighted kappa is higher than Cohen’s kappa for tridiagonal agreement tables

Matthijs J. Warrens*

Institute of Psychology, Unit Methodology and Statistics, Leiden University, P.O. Box 9555, 2300 RB Leiden, The Netherlands

A R T I C L E I N F O

Article history:
Received 25 May 2010
Received in revised form
8 September 2010
Accepted 10 September 2010

Keywords:
Cohen’s kappa
Cohen’s weighted kappa
Linear weights
Quadratic weights
Nominal agreement
Ordinal agreement

A B S T R A C T

Cohen’s kappa and weighted kappa are two popular descriptive statistics for measuring agreement between two observers on a nominal scale. It has been frequently observed in the literature that, when Cohen’s kappa and weighted kappa are applied to the same agreement table, the value of weighted kappa is higher than the value of Cohen’s kappa. This paper proves this phenomenon for tridiagonal agreement tables.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The kappa coefficient [5,1,23,20–22] and weighted kappa coefficient [6,9,2,15,17,14] are popular descriptive statistics for summarizing the cross-classification of two nominal variables with \(n \in \mathbb{N}_{\geq 2} \) identical categories [10]. An \(n \times n \) table can for example be obtained by cross-classifying the ratings of two observers that each have classified a group of objects into \(n \) categories. In this case, the \(n \times n \) table can be referred to as an agreement table, since it reflects how the ratings of the two observers agree and disagree. Agreement tables occur in various fields of science, and applications of kappa and weighted kappa can therefore be found in epidemiological and clinical studies (see, for example, [16,11]), diagnostic imaging [13], map comparison [19] and content analysis [12].

It has been frequently observed in the literature that, when Cohen’s kappa and weighted kappa are applied to the same agreement table, the value of weighted kappa is higher than the value of Cohen’s kappa. For example, consider the data in Table 1 taken from a study in [16]. In this study two trained readers independently graded 324 iris photographs using a five-grade classification system.

* Tel.: +31 71 5273649; fax: +31 71 5273619.
E-mail address: warrens@fsw.leidenuniv.nl.

1572-3127/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.stamet.2010.09.004
Categories of iris color were distinguished on the basis of the predominant color (blue, gray, green, light brown, or brown) and the amount of brown or yellow pigment present in the iris. For these data Cohen’s kappa equals 0.796, whereas weighted kappa using quadratic weights is equal to 0.965. A value of 1 would indicate perfect agreement between the two readers.

The value of weighted kappa does not always exceed the value of Cohen’s kappa. It turns out however that the inequality holds for a special kind of agreement table. In this short paper we prove that the value of weighted kappa exceeds that of Cohen’s kappa when the agreement table is tridiagonal. A tridiagonal table is a square matrix that has nonzero elements only on the main diagonal, the first diagonal below this (subdiagonal) and the first diagonal above this (superdiagonal). Note that Table 1 is almost tridiagonal. Agreement tables that are tridiagonal or approximately tridiagonal are frequently encountered in applications. Examples can be found in [18,16,8,3,7].

The paper is organized as follows. Weighted kappa is defined in the next section. The conditional inequality is proved in Section 3. Section 4 contains some conclusions.

2. Kappa and weighted kappa

In this section we define the weighted kappa statistic, which is usually denoted by κ_w. Cohen [6] introduced weighted kappa as a generalization of kappa [5], which is usually denoted by κ. Weighted kappa allows for assigning partial credit to the nominal categories by using weights.

Suppose that two observers each distribute $m \in \mathbb{N}_{\geq 1}$ given objects (individuals) among a set of $n \in \mathbb{N}_{\geq 2}$ mutually exclusive categories, that are defined in advance. Let the agreement table T with entries t_{ij} ($i,j \in \{1,2,\ldots,n\}$) be the cross-classification of the ratings of the observers, where t_{ij} indicates the number of objects placed in category i by the first observer and in category j by the second observer. The elements on the main diagonal of T, t_{ii} for $i \in \{1,2,\ldots,n\}$, are usually called the agreements because they reflect the number of objects that the observers placed in the same categories. All other elements, t_{ij} for $i \neq j$, are usually called the disagreements.

For notational convenience, let P be the agreement table of the same size as T ($n \times n$) with entries $p_{ij} = t_{ij}/m$. Row and column totals

$$p_i = \sum_{j=1}^{n} p_{ij} \quad \text{and} \quad q_j = \sum_{i=1}^{n} p_{ij}$$

are the marginal totals of P. The weighted kappa statistic can be defined as

$$\kappa_w = \frac{p^w_o - p^w_e}{1 - p^w_e} \quad (1)$$

where

$$p^w_o = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} p_{ij} \quad \text{and} \quad p^w_e = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} q_i q_j$$

with $w_{ij} \in [0, 1]$ and $w_{ii} = 1$ for $i,j \in \{1,2,\ldots,n\}$. In (1) we assume that $p^w_e < 1$ to avoid the indeterminate case $p^w_e = 1$.

Table 1

Color gradings of 324 iris photographs by two trained readers (Table 1 in [16]).

<table>
<thead>
<tr>
<th>Reader B</th>
<th>Reader A</th>
<th>Row totals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>98 11 0 0 0</td>
<td>109</td>
</tr>
<tr>
<td>2</td>
<td>7 38 5 2 0</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>0 2 25 8 0</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>0 0 8 40 2</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>0 0 0 6 72 78</td>
<td></td>
</tr>
<tr>
<td>Column totals</td>
<td>105 51 38 56 74</td>
<td>324</td>
</tr>
</tbody>
</table>
Table 2

The form of a tridiagonal matrix of size $n \times n$. The a_i for $i \in \{1, 2, \ldots, n\}$ are the elements of the main diagonal, whereas the b_i and c_i for $i \in \{1, 2, \ldots, n-1\}$ are, respectively, the elements of the superdiagonal and subdiagonal. All other elements are 0.

<table>
<thead>
<tr>
<th>Reader B</th>
<th>Reader A</th>
<th>Row totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a_1</td>
<td>b_1</td>
</tr>
<tr>
<td>2</td>
<td>c_1</td>
<td>a_2</td>
</tr>
<tr>
<td></td>
<td>\ddots</td>
<td>\ddots</td>
</tr>
<tr>
<td>$n-1$</td>
<td>c_{n-2}</td>
<td>a_{n-1}</td>
</tr>
<tr>
<td>n</td>
<td>c_{n-1}</td>
<td>a_n</td>
</tr>
<tr>
<td>Column totals</td>
<td>q_1</td>
<td>q_2</td>
</tr>
</tbody>
</table>

Examples of weights for κ_w that have been proposed in the literature are the linear weights [4,17,14] given by

$$w_{ij}^l = 1 - \frac{|i - j|}{n - 1},$$

and the quadratic weights [9,15] given by

$$w_{ij}^q = 1 - \left(\frac{i - j}{n - 1}\right)^2.$$

Using the weights in (2) we have $p_o^w = 0.959$, $p_e^w = 0.555$ and $\kappa_w = 0.908$ for the data in Table 1. Furthermore, using the weights in (3) we have $p_o^w = 0.989$, $p_e^w = 0.682$ and $\kappa_w = 0.965$ for the data in Table 1.

If $w_{ij} = 0$ for $i, j \in \{1, 2, \ldots, n\}$ and $i \neq j$, then p_o^w and p_e^w become, respectively,

$$p_o = \sum_{i=1}^{n} p_{ii} \quad \text{and} \quad p_e = \sum_{i=1}^{n} p_i q_i.$$

In this case, (1) is equivalent to

$$\kappa = \frac{p_o - p_e}{1 - p_e},$$

which is the ordinary or unweighted kappa statistic [5]. For the data in Table 1, we have $p_o = 0.843$, $p_e = 0.229$ and $\kappa = 0.796$. Using the weights (2) or (3), the statistics κ and κ_w are equivalent if $n = 2$. Statistics κ and κ_w are also equivalent if $p_o = 1$.

3. A conditional inequality

In the theorem below we prove an inequality between κ and κ_w. We first consider a restriction on the weights of κ_w. In general, we have $w_{ij} \in [0, 1]$ for $i, j \in \{1, 2, \ldots, n\}$ and $w_{ii} = 1$ for $i \in \{1, 2, \ldots, n\}$ for the elements on the main diagonal of P. Note that, if we were to use the weights in (2) or (3), the weights would be a decreasing function of the distance $|i - j|$, that is, disagreements corresponding to adjacent categories would have higher weights than disagreements corresponding to categories that are further apart.

Consider the structure of the agreement table presented in Table 2. Let $v \in (0, 1]$ and let $w(a_i)$ denote the weight corresponding to the element a_i. In the theorem below we require that the elements on the main diagonal have weight 1, the elements on the superdiagonal and the subdiagonal have the same weight v, and that all other weights are between 0 and v. Examples of weights that satisfy these conditions are the weights presented in (2) and (3).
Theorem. Suppose the agreement table has the form presented in Table 2, and suppose that not all \(b_i \) and \(c_i \) are 0. Let \(v \in (0, 1) \) and let the weights of \(\kappa_w \) be given by

\[
w(a_i) = 1 \quad \text{for } i \in \{1, 2, \ldots, n\},
\]

\[
w(b_i) = w(c_i) = v \quad \text{for } i \in \{1, 2, \ldots, n - 1\},
\]

\[w_{ij} \in [0, v) \quad \text{for } i, j \in \{1, 2, \ldots, n\} \text{ and } |i - j| \geq 2.
\]

Then \(\kappa_w > \kappa \).

Proof. We first show that (4) is equivalent to (6). Since \(1 - p_e \) and \(1 - p_e^w \) are positive numbers, we have \(\kappa_w > \kappa \) if and only if

\[
\frac{p_o^w - p_e^w}{1 - p_e^w} > \frac{p_o - p_e}{1 - p_e}
\]

\[
\Downarrow
\]

\[
(p_o^w - p_e^w)(1 - p_e) > (p_o - p_e)(1 - p_e^w)
\]

\[
\Downarrow
\]

\[
p_o^w - p_e^w - p_o^w p_e + p_e^w p_e > p_o - p_e - p_o p_e^w + p_e^w p_e.
\]

Under the conditions of the theorem, \(p_o^w > p_e \), that is, \(p_o^w - p_e \) is a positive number. Subtracting \(p_e^w p_e \) from and adding \(p_o p_e \) to both sides of (5), we obtain

\[
(p_o^w - p_o)(1 - p_e) > (p_e^w - p_o)(1 - p_o)
\]

\[
\Downarrow
\]

\[
\frac{p_o^w - p_o}{p_e^w - p_e} > \frac{1 - p_o}{1 - p_e}.
\]

Next, consider Table 2. Since \(v \) is the common weight of all elements on the superdiagonal and subdiagonal, we have

\[
p_o = \sum_{i=1}^{n} a_i \quad \text{and} \quad p_o^w = \sum_{i=1}^{n} a_i + v \sum_{i=1}^{n-1} (b_i + c_i)
\]

and hence

\[
p_o^w - p_o = v \sum_{i=1}^{n-1} (b_i + c_i) \quad \text{and} \quad 1 - p_o = \sum_{i=1}^{n-1} (b_i + c_i).
\]

Thus, \(p_o^w - p_o = v(1 - p_o) \), and since \(1 - p_o \) (not all \(b_i \) and \(c_i \) are 0), \(p_o^w - p_e \), \(1 - p_e \), and \(v \) are positive numbers, (6) holds if and only if

\[
v(1 - p_e) > p_e^w - p_e.
\]

Because

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} p_i q_j = 1,
\]

(7) is equal to

\[
v \left(\sum_{i=1}^{n} \sum_{j=1}^{n} p_i q_j - \sum_{i=1}^{n} p_i q_i \right) > \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} p_i q_j - \sum_{i=1}^{n} p_i q_i.
\]

Inequality (8) holds since \(v > w_{ij} \) for \(i, j \in \{1, 2, \ldots, n\} \) and \(|i - j| \geq 2 \). This completes the proof.
4. Conclusions

It has been frequently observed in the literature that, when Cohen's kappa and weighted kappa are applied to the same agreement table, the value of weighted kappa is higher than the value of Cohen's kappa. In this short paper we proved this phenomenon for tridiagonal agreement tables. A tridiagonal table is a square matrix that has nonzero elements only on the main diagonal, the first diagonal below this and the first diagonal above this. Agreement tables that are tridiagonal or almost tridiagonal (see for example Table 1) are frequently encountered in applications. Hence, tridiagonal agreement tables are general enough to make this result useful.

In the theorem we require that the elements on the main diagonal have weight 1, the elements on the first diagonals above and below the main diagonal have a weight $v \in (0, 1]$, and all other weights are between 0 and v. Examples of weights that satisfy these conditions are the linear weights $[4, 17, 14]$ and the quadratic weights $[9, 13, 15]$. In particular, the latter weights are frequently used in applications, although the weighted kappa statistic allows the use of weights of other types [6].

References